"Observations on Future Infrastructure Needs"

Bruce Lambert
Executive Director
Institute for Trade and Transportation Studies

November 7, 2008

The World is Changing...

- Operational Changes
 - Port Strikes
 - Rail meltdowns
 - Growing Vessel Capacity
 - Lock and Dam Closures
- Regulatory Policies
- Shifting trade patterns
- Cost Variability
- Natural Disasters/climate change
- Terrorism and Security
- Economic Downturns
- "Green" Pressures
- Funding Challenges
- Reducing Risks

Current and Forecasts of Total Freight Shipments - FHWA FAP

Table 2-1. Shipments by Mode and Weight: 2002 and 2035 (Millions of Tons)

	2002			
	Total	Domestic	Exports ³	Imports ³
Total	(P) 19,326	17,670	(P) 524	(P) 1,133
Truck	11,539	11,336	106	97
Rail	1,879	1,769	32	78
Water	701	595	62	44
Air, air & truck	(P) 10	3	(P) 3	(P)4
Intermodal ¹	1,292	196	317	780
Pipeline & unknown ²	3,905	3,772	4	130
	2035			
Total	(P) 37,178	33,668	(P) 1,105	(P) 2,404
Truck	22,814	22,231	262	320
Rail	3,525	3,292	57	176
Water	1,041	874	114	54
Air, air & truck	(P) 27	10	(P) 7	(P) 10
Intermodal ¹	2,598	334	660	1,604
Pipeline & unknown ²	7,172	6,926	5	240
	% Change 2002-2035			
Total	92%	91%	111%	112%
Truck	98%	96%	148%	230%
Rail	88%	86%	78%	126%
Water	49%	47%	83%	23%
Air, air & truck	170%	233%	133%	150%
Intermodal ¹	101%	70%	109%	106%
Pipeline & unknown ²	84%	84%	23%	85%
Key: P = preliminary	•			

Does Inland Navigation Matter?

• Can we say:

- How did the system evolve?
- How are users approaching the inland system?

Considerations regarding future use

- Alleviate congestion in other modes
- "Endless Capacity"?
- Integration with other modes, including deep-sea ports
- Environmental advantages and exposures
- Inconsistent policies stymie evolution-adaptation in maritime sector
- Geography constraints do exist

How Can One Look At the Inland Navigation Industry?

- Inventory Functions physical characteristics, numbers of facilities, labor, equipment, infrastructure
- Engineering structural integrity, deterioration
- Operational Reliability delay, closures
- Economical and Financial Cost/Benefit Analysis, capital and financial resources, jobs and taxes
- Safety, Security, Regulatory number of accidents, exposure, fees, taxes, inspections, etc.
- Markets hinterlands, multimodal services, shippers, carriers
- Equipment and Traffic number of barges, age of fleet, etc.
- Non Navigational Users Recreation, flood control, hydropower, Fish and Wildlife, water supply

Who Gains from Inland Transportation Improvements?

- Carriers reduction in operating expenses, improved reliability, profits
- Ports additional revenues, prestige, local employment
- Governments and other local industries additional revenues, employment
- Shippers –minimized disruption, reduced out of pocket costs, valuation of time, modal choice
- Other users less traffic, etc.
- Who does not benefit? Externalities and NED benefits?

Without Planning This Would Have Been a Mess

What kind of transportation system do we (nationally) want? Now? Or In 30 years?

- Safe, Secure, Environmental Responsible, Efficient/Reliable
 - ♦ Common theme across Corps, US DoT, State DoT's, etc.
- Customers (Shippers/Carriers/Public) assume this plus
 - cost effectiveness and accessibility

Options for Operations Improvement

- Build (improve) system capacity
 - Privatization
 - Flexibility
- Increase Operations (system velocity)
 - Reduce delays, notifications, technologies
- Create or Support emerging transportation options
 - Marine Highways
 - Inland ports as Logistics centers

Infrastructure development complicated by several factors

- Equity: Can't build everything everyone wants everywhere
- Project Determination: Balance project needs with relevant policy goals
- Communication: Failure to communicate needs, especially to non-technical decision makers
- Lack of common analytical models, datasets and guidance
- Uncertain, dynamic Policy expectations
 - energy use, environment, unintended consequences
- Financing
 - More costly new projects chasing less federal/state funds
 - Maintenance costs continue consuming larger share of available funds
- Perception: Transportation is a "Free Lunch", so don't make me pay again to use it
- Maintenance verse New Project Funding Match to previous level.
- State Laws Regarding Spending Limitations

How much will an improved Freight system cost?

- ASCE 2005 (first issued in 1988)
- AASTHO Freight Bottom Line Reports
- FHWA Condition and Needs for Highways
- USACE IWR Dredging Needs Studies
- Estimation of Value of Capital Stock Replacement
- National Surface Transportation Policy an Revenue Study Commission
- No consistent National Investment Model
 - Various numbers, forecasts, etc., distort message
 - Lack of analytical models and data that match planning and policy needs

Public Sector Development – Estimating the Real Need

One Consideration – Strengthen Federal Approach to Waterways

- Reestablish the Strong Federal Leadership Role in Market Access and Economic Development
 - ◆ A promise made a promised kept
 - Without a "moon shot" perspective, hard to sustain interest.
- Evolution from Systems to Multimodal Planning
- Develop multiyear capital budgeting at system level
- Integrate life cycle costing with appropriate budgets

Where does the Money come from...

Federal Sources

• Indexed Fuel Taxes, User Fees, registrations, Infrastructure Banks, etc.

State Sources

- Linking waters and economic development (brownfields, greenfields), developing state champions
- Public Private Partnerships
- If we receive new funds, but authorizations and approvals occur in the same manner, did anything improve?
- Projects must match goals, and demonstrate returns to the Federal Government

Conclusion

- Improving navigation different from past years
- System's use not fully understood or appreciated
- New institutional approaches needed to "relink" transportation to economic growth
- Economic development = people development Example - Tenn-Tom
 - Congressional and State members involved
 - Sees the Region wins if the components win
 - Benefits are consistent with regional economic development goals in region